## Business Calculus Final Review problems:

1) Roberts Hair Salon offers a basic haircut and a deluxe haircut. Let $x$ represent the demand for basic haircuts and y represent the demand for deluxe haircuts. The price-demand equations are given by:
$p=12-0.3 x+0.1 y$ gives the price in dollars of a basic haircut and $q=20+0.1 x-0.2 y$ the price of a deluxe haircut.
a) Determine the Revenue function $R(x, y)$
b) How many of each haircut should be given to maximize revenue?
c) What is the maximum revenue?
2) The fax store expects to sell 800 fax machines in a year. Each fax machine costs $\$ 62$ to store for a year, and there is a fixed cost of $\$ 24$ per order. How large should each order be and how many times a year should orders be placed to minimize costs?
3) The demand for tissues is given by: $q=(100-p)^{2}$ where p is the price and q is the demand for tissues.
a) Is the demand Elastic or Inelastic at a price of $\$ 30$ ?
b) What is the best price to maximize revenue?
4) A small company manufactures bikes. The cost function is $C(x)=10+5 x+\frac{1}{60} x^{3}$ and the Revenue $R(x)=90 x-x^{2}$, where x is the bikes produced each week and $\mathrm{R}(\mathrm{x})$ and $\mathrm{C}(\mathrm{x})$ are in dollars.
a) Find the maximum Revenue and when it occurs
b) Find the profit function $\mathrm{P}(\mathrm{x})$
c) Where is the profit increasing?
5) Suppose the demand function for a certain product is given by: $p=\frac{50,000-x}{25,000}$ where x is the units and p the price. The cost function is $C(x)=2100+0.25 x$
a) Find the profit function $P(x)$
b) Find MP(x)
c) Find and interpret MP $(15,000)$
6) The monthly sales of a new computer are given by: $s(t)=30 t-0.5 t^{2}$ hundred units per month t months after the computer hits the market. Evaluate and Interpret $s(6)$ and $s^{\prime}(6)$

Answers

1) 44 basic and 72 deluxe haircuts will maximize the revenue at $\$ 984$
2) 25 fax machines should be ordered 32 times a year to minimize costs
3) Inelastic at $\$ 30$, best price is $\$ 33.33$ to maximize revenue
4) a. 45 bikes give max revenue of $\$ 2025$
b. $P(x)=\frac{1}{60} x^{3}-x^{2}+85 x-10$
c. profit increases when you sell from 0 to 26 bikes
5) a. $P(x)=\frac{-x^{2}}{25000}+1.75 x-2100 \quad$ b. $M P(x)=\frac{-x}{12500}+1.75$
c. The profit for the 15,001 st unit is $\$ 0.55$
6) $s(6)=162, s^{\prime}(6)=246$ months after a new computer is put on the market the monthly sales are 16200 and are increasing at a rate of 2400 computers per month.
