Math 150
Ms. Meier
Review Chapter 1

1) Use the above graph to find each limit, if it exists:
a) $\operatorname{Lim}_{x \rightarrow-5} f(x)$
b) $\operatorname{Lim}_{x \rightarrow-2} f(x)$
c) $\operatorname{Lim}_{x \rightarrow 0} f(x)$
d) $\operatorname{Lim}_{x \rightarrow 3} f(x)$
e) $\operatorname{Lim}_{x \rightarrow 4} f(x)$
f) $\operatorname{Lim}_{x \rightarrow-4} f(x)$
2) Find each limit algebraically, if it exists:
a) $\operatorname{Lim}_{x \rightarrow-4}\left(5 x-x^{2}-2 x^{3}\right)$
b) $\operatorname{Lim}_{x \rightarrow 5} \frac{x-5}{x^{2}-x-20}$
c) $\operatorname{Lim}_{h \rightarrow 0}\left(3 x^{2}+2 x h+3 h^{2}\right)$
d) $\operatorname{Lim}_{x \rightarrow-1} \frac{x+1}{x^{3}+1}$
3) Suppose the Sports Stylz Inc. determines that the revenue, in dollars, from the sale of x cell phone sunglasses is given by: $R(x)=-0.01 x^{2}+1000 x$ Find the average rate of change from $\mathrm{x}=10$ to $\mathrm{x}=15$ and interpret.
4) Graph: $f(x)=\left\{\begin{array}{ll}x+3 & \text { for } x \geq 1 \\ x^{2}+4 & \text { for } x<1\end{array} \quad\right.$ is $\mathrm{f}(\mathrm{x})$ continuous?
5) Find $d y / d x$
a) $y=-\frac{2}{3} x^{3}+16 x^{2}+4 x+11$
b) $y=\frac{2 x-1}{x^{4}}$
c) $y=\left(6 x^{2}-10 x+1\right)^{-4}$
d) $y=5 \sqrt[3]{x}+6 \sqrt{x}$
e) $y=(x+5)^{5}(4-x)^{2}$
f) $y=x^{\frac{4}{5}}+\frac{4}{x^{3}}-\frac{1}{\sqrt{x}}$
6) Find an equation of the tangent line to the graph of $y=2 x+\frac{3}{x}$ at $x=1$
7) A biologist models the effects of introducing a certain toxin to a bacterial colony by the function $P(t)=\frac{t+1}{t^{2}+t+4}$ where P is the population of the colony, in millions, t hours after the toxin is introduced.
a) At what rate is the population changing when the toxin is introduced? $(t=0)$
b) At what rate is the population changing 1 hour after the toxin has been introduced?
8) Find the points on the graph of $f(x)=x^{3}-2 x^{2}$ at which the tangent line is horizontal.
9) The number of cases of tuberculosis reported in the U.S. can be modeled by $f(x)=-0.014 x^{3}+0.39 x^{2}-3.11 x+30.29$ where x is the years since 1979 and $f(x)$ is the number of cases of tuberculosis in thousands.

Find $f^{\prime}(10)$ and interpret

Answers:

1. a) ∞
b) does not exist
c) 1
d) -1
e) does not exist
f) 1
2. a) 92
b) $1 / 9$
c) $3 x^{2}$
d) $1 / 3$
3. The average rate of change $=999.75$, when selling from 10 to 15 cell phone sunglasses the revenue is increasing on average $\$ 999.75 /$ cell phone sunglass
4. Graph, $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=1$
5. a) $d y / d x=-2 x^{2}+32 x+4$
b) $d y / d x=\frac{-2(3 x-2)}{x^{5}}$
c) $d y / d x=\frac{-8(6 x-5)}{\left(6 x^{2}-10 x+1\right)^{5}}$
d) $d y / d x=\frac{5}{3 \sqrt[3]{x^{2}}}+\frac{3}{\sqrt{x}}$
e) $d y / d x=(x+5)^{4}(4-x)(10-7 x)$
f) $d y / d x=\frac{4}{5 \sqrt[5]{x}}-\frac{12}{x^{4}}+\frac{1}{2 \sqrt{x^{3}}}$
6. $y=-x+6$
7. a) the bacteria population is growing at a rate of 0.1875 million/hour b) after 1 hour of the toxin being introduced, the bacteria population is not growing (derivative $=0$)
8. (0,0) and (4/3, -32/27)
9. In 1989 the number of cases of TB is increasing at a rate of 490 /year (or .49 tousand/year)
