$\qquad$

1) Country workshop manufactures both finished and unfinished furniture for the home. The estimated quantities demanded each week of its rolltop desks in the finished and unfinished versions are x and y units when the corresponding unit prices are:

$$
\begin{aligned}
& p=200-\frac{1}{5} x-\frac{1}{10} y \\
& q=160-\frac{1}{10} x-\frac{1}{4} y
\end{aligned}
$$

a) Find the Revenue function $R(x, y)$
b) Compute $\mathrm{R}(100,60)$ and Interpret
2) Find the first order partial derivatives of each:
a) $f(x, y)=x^{2}-x y^{2}+y^{3}$
b) $f(x, y)=x \operatorname{Ln} y+y \operatorname{Ln} x$
c) $f(x, y)=3 x^{2}-4 x y^{2}+6 y^{3}+x e^{3 y}$
d) $f(x, y)=\left(x^{2}-x y+y^{2}\right)^{5}$
3) Find the second order partial derivatives of $f(x, y)=x^{3}-3 x^{2} y+3 x y^{2}+y^{2}$
4) The total weekly revenue of the Country workshop associated with manufacturing and selling their rolltop desks is given by: $R(x, y)=-0.2 x^{2}-0.25 y^{2}-0.2 x y+200 x+160 y$ where x denotes the number of finished units and $y$ the number of unfinished units manufactured and sold each week. Compute and Interpret $R_{x}(x, y)$ and $R_{y}(x, y)$ when $\mathrm{x}=300$ and $\mathrm{y}=250$.
5) Find any relative extrema or saddle points for: $f(x, y)=4 y^{3}+x^{2}-12 y^{2}-36 y+2$
6) The total weekly revenue in dollars that Acrosonic realizes in producing and selling its bookshelf speakers is given by: $R(x, y)=-\frac{1}{4} x^{2}-\frac{3}{8} y^{2}-\frac{1}{4} x y+300 x+240 y$ where x denotes the number of fully assembled units and $y$ the number of unassembled kits produced and sold each week. The total weekly cost for the production of these speakers is $C(x, y)=180 x+140 y+5000$ dollars. Determine how many of each type of speaker units should be produced and sold each week to maximize profit. What is the maximum weekly profit?
7) Evaluate each Integral:
a) $\int_{0}^{4} 3 x y^{2} d y$
b) $\int_{0}^{2}(3 x+5 y) d x$
c) $\int_{1}^{2} \int_{1}^{4}(x+2 y) d x d y$
d) $\int_{0}^{2} \int_{x}^{2 x}\left(x^{2}+y^{2}\right) d y d x$

## Answers:

1) a. see problem 4 b. the revenue is $\$ 25500$ when selling 100 finished and 60 unfinished desks
2) a. $f_{x}=2 x-y^{2} \quad$ and $\quad f_{y}=-2 x y+3 y^{2} \quad$ b. $f_{x}=\operatorname{Ln} y+\frac{y}{x} \quad$ and $f_{y}=\frac{x}{y}+\operatorname{Ln} x$
c. $f_{x}=6 x-4 y^{2}+e^{3 y}$ and $f_{y}=-8 x y+18 y^{2}+3 x e^{3 y}$ d. $f_{x}=5(2 x-y)\left(x^{2}-x y+y^{2}\right)^{4}$ and $f_{y}=5(2 y-x)\left(x^{2}-x y+y^{2}\right)^{4}$
3) $f_{x x}=6 x-6 y \quad f_{y y}=6 x+2 \quad f_{x y}=f_{y x}=-6 x+6 y$
4) The weekly revenue increases by $\$ 30 /$ unit for each additional finished desk produced (beyond 300) when the level of production of unfinished desks remains fixed at 250. Also The revenue decreases by $\$ 25 /$ unit when each additional unfinished desk (beyond 250 ) is produced and the level of production of finished desks remains fixed at 300.
5) Saddle point at $(0,-1)$, Relative Minimum occurs at $(0,3)$ this relative minimum is -106
6) If they produce 208 assembled units and 64 unassembled kits the weekly profit will be maximized at $\$ 10,680$.
7) a. $64 x$
b. $6+10 y$
c. $33 / 2$
d. $40 / 3$
