Study Guide to Electrochemistry

- 1. Term to know:
- Faraday Constant: The charge (in Coulombs) of one mole of electrons:

F = 96485 C / mol e-

2. The relationship between ΔG and $E_{cell:}$

 ΔG = -nFE_{cell}

- Where:
 - ο ΔG: Change in Gibbs Free Energy
 - \circ $\,$ n: number of moles of electrons exchanged in the redox reaction
 - F: Faraday's constant
 - o E_{cel}I: The general cell potential (not necessarily under standard conditions)
- 3. How to tell if a reaction is spontaneous from the value of E_{cell}:
- If E_{cell} is positive (E_{cell} > 0), then the reaction is spontaneous
- If E_{cell} is negative (E_{cell} < 0), then the reaction is not spontaneous
- 4. How to combine known E° values to find an unknown E° value

Consider the following reaction:

$$Fe^{3+}(aq) + 3e^{-} -> Fe(s)$$

This reaction (and its E° value) are not found in the standard reduction potentials table. Instead, we find the following:

1.
$$Fe^{2+}_{(aq)} + 2e^{-} \rightarrow Fe_{(s)} (E^{\circ} = -0.440 V)$$

2. $Fe^{3+}_{(aq)} + e^{-} \rightarrow Fe^{2+}_{(aq)} (E^{\circ} = 0.771 V)$
3. $Fe^{3+}_{(aq)} + 3e^{-} \rightarrow Fe_{(s)} (E^{\circ} = ?)$

We cannot just add the E° values because the number of electrons transferred is different for both equations. Instead, we calculate the ΔG values, which we can then add:

$$\Delta G = -nFE^{\circ}_{cell}$$

1.
$$\Delta G = -(2 \text{ mol } e^{-})(96485 \text{ C/mol } e^{-})(-0.440 \text{ V}) = 0.880\text{ F V}$$

2. $\Delta G = -(1 \text{ mol } e^{-})(96485 \text{ C/mol } e^{-})(0.771 \text{ V}) = -0.771\text{ F V}$

$$\Delta G_{total} = 0.880 F V - 0.771 F V = 0.109 F V$$

We can then use ΔG_{total} to calculate E° :

 $\Delta G_{total} = 0.109 F V$

-nFE° = 0.109F V -3FE° = 0.109F V E° = -0.0363 V