Squares, Square Roots, and the Laws of Exponents

Hints/Guide:

Exponents are a way to represent repeated multiplication, so that 3⁴ means 3 multiplied four times, or $3 \cdot 3 \cdot 3 \cdot 3$, which equals 81. In this example, 3 is the base and 4 is the power.

Roots are the base numbers that correspond to a given power, so the square (referring to the power of 2) root of 81 is 9 because $9 \cdot 9 = 81$ and the fourth root of 81 is 3 because $3 \cdot 3 \cdot 3 \cdot 3$ is 81.

 $\sqrt[n]{x}$, where n is the root index and x is the radicand

There are certain rules when dealing with exponents that we can use to simplify problems. They

are:

Adding powers
$$a^m a^n = a^{m+n}$$

Multiplying powers $(a^m)^n = a^{mn}$

Subtracting powers $\frac{a^m}{a^n} = a^{m-n}$

Negative powers $a^{-n} = \frac{1}{a^n}$

 $a^0 = 1$ To the zero power

Exercises: Evaluate:

1.
$$(8-4)^2 =$$

1.
$$(8-4)^2 =$$
 2. $(4-2)^2 (5-8)^3 =$ 3. $5(8-3)^2 =$

3.
$$5(8-3)^2 =$$

4.
$$\sqrt{25-16} =$$

4.
$$\sqrt{25-16} =$$
 5. $\sqrt{5(9 \cdot 125)} =$

6.
$$\sqrt{(8-4)(1+3)} =$$

Simplify the following problems using exponents (Do not multiply out):

7.
$$5^2 5^4 =$$

8.
$$(12^4)^3 =$$

9.
$$5^9 \div 5^4 =$$

10.
$$10^3 \div 10^{-5} =$$

11.
$$7^{-3} =$$

12.
$$3^{-4} =$$

13.
$$(3^3 \cdot 3^2)^3 =$$

14.
$$5^3 \cdot 5^4 \div 5^7 =$$