Mini-Lecture 2.6
Absolute Value Equations and Inequalities
Learning Objectives:

1. Solve absolute value equations.
2. Solve absolute value inequalities involving $<$ or \leq.
3. Solve absolute value inequalities involving $>$ or \geq.
4. Solve applied problems involving absolute value.

Preparing for Absolute Value Equations and Inequalities:
Evaluate each expression:
i) $|-12|=12$
ii) $\left|\frac{0}{-10}\right|=|0|=0$ iii) $|0.4|=0.4$

EQUATIONS INVOLVING ABSOLUTE VALUE
If a is a positive real number and if u is any algebraic expression, then

$$
|u|=a \quad \text { is equivalent to } \quad u=a \quad \text { or } \quad u=-a
$$

Note: If $a=0$, the equation $|u|=0$ is equivalent to $u=0$. If $a<0$, the equation $|u|=a$ has no real solution.

Examples:

1. Solve each absolute value equation.

$$
\left.\begin{array}{l}
\text { a) }|-2 x-5|=9 \\
-2 x-5=9 \text { or } \\
-2 x-5=-9 \\
-2 x=14 \\
\begin{cases} & -2 x=-4\end{cases} \\
x \mid x=-7 \text { or } \\
\text { b) } x=2\} \\
3|4 x+1|-2=10
\end{array}\right] \begin{array}{ll}
\frac{3|4 x+|=}{3} \frac{12}{3} & \\
|4 x+1|=4 & \\
4 x+1=4 \text { or } 4 x+1=-4 \\
4 x=3 & 4 x=-5 \\
\{x \mid x=3 / 4 \text { or } & x=-5 / 4\}
\end{array}
$$

EQUATIONS INVOLVING TWO ABSOLUTE VALUES
If u and v are any algebraic expression, then

$$
|u|=|v| \quad \text { is equivalent to } \quad u=v \text { or } u=-v
$$

$$
\begin{aligned}
& \text { c) }\left|\frac{2}{3} x-9\right|=|6 x+3| \\
& \begin{array}{ll}
\frac{2}{3} x-9^{3}=6 x+3^{3} & \text { or } \frac{2}{3} x-9^{3}=-3(6 x+3) \\
2 x-27=18 x+9 & \text { or } 2 x-27=-3(6 x+3) \\
-\frac{16 x}{-16}=\frac{36}{16} & 2 x-27=-18 x-9 \\
\left\{x \left\lvert\, x=-\frac{9}{4}\right.\right. & \text { or } x=\frac{20 x}{10}=\frac{18}{20}
\end{array}
\end{aligned}
$$

Equations with absolute values and inequalities:
If a is a positive real number and if us is an algebraic expression, then:
$\begin{array}{lll}|\mathrm{u}|<\mathrm{a} & \text { is equivalent to } & -\mathrm{a}<\mathrm{u}<\mathrm{a} \\ |\mathrm{u}| \leq \mathrm{a} & \text { is equivalent to } & -\mathrm{a} \leq \mathrm{u} \leq \mathrm{a}\end{array}$
$|\mathrm{u}|>\mathrm{a} \quad$ is equivalent to $\quad \mathrm{u}<-\mathrm{a}$ or $\mathrm{u}>\mathrm{a}$
$|\mathrm{u}| \geq \mathrm{a} \quad$ is equivalent to $\quad \mathrm{u} \leq-\mathrm{a}$ or $\mathrm{u} \geq \mathrm{a}$
2. Solve each absolute value inequality. Graph the solution set on a real number line.

$$
\text { a) }|x+5|>2
$$

$$
x+5<-2 \text { or } x+5>2
$$

b) $|2 x-3| \leq 7$

$$
\begin{aligned}
& -\frac{4}{2} \leq \frac{2}{2} x \leq \frac{10}{2} \\
& -2 \leq x \leq 5
\end{aligned}
$$

c)

$$
\begin{gathered}
|-5 x-8|+12<4 \\
|-5 x-8|<-8 \\
\varnothing
\end{gathered}
$$

d) $\frac{2|x+12|}{2} \geq \frac{0}{2}$

$$
\frac{|x+12| \geq 0}{(-\infty, \infty)}
$$

