Mini-Lecture 2.4

Linear Functions and Models

Learning Objectives:

1. Graph linear functions.
2. Find the zero of a linear function.
3. Build linear models from verbal descriptions
4. Build linear models from data.

Preparing for Linear Functions and Models:

i) Solve for $x: \frac{2}{3} x+4=0$.
ii) Graph using the point-plotting method:

$$
3 x-2 y=6
$$

Examples:

DEFINITION

A linear function is a function of the form

$$
f(x)=m x+b
$$

where m and b are real numbers. The graph of a linear function is called a line.

1. Graph each linear function.
a) $f(x)=-6 x-2$
b) $\quad f(x)=\frac{4}{3} x-4$

Mini-Lecture 2.4

Linear Functions and Models
2. Find the zero of $H(x)=-\frac{3}{2} x+6$.
3. Use the set of data points below.

x	1	4	3	6
y	18	8	10	2

a) Draw a scatter diagram of the data.

b) Select two points from the scatter diagram and find the equation of line containing the two points selected.
c) Graph the line found in part b) on the scatter diagram.
4. Perimeter of a Rectangle In a given rectangle, the length is 3 ft less than twice the width. If x represents the width of the rectangle, the perimeter can be calculated by the function: $P(x)=2 x+2(2 x-3)$.
a) What is the implied domain of the function?
b) What are the dependent and independent variables?

Mini-Lecture 2.4

Linear Functions and Models
c) What is the perimeter of a rectangle whose width is 12 ft ?
d) What is the width of a rectangle whose perimeter is 84 ft ?

