Mini-Lecture 2.4

Linear Functions and Models

Learning Objectives:

- 1. Graph linear functions.
- 2. Find the zero of a linear function.
- 3. Build linear models from verbal descriptions
- 4. Build linear models from data.

Preparing for Linear Functions and Models:

i) Solve for *x*:
$$\frac{2}{3}x + 4 = 0$$
.

ii) Graph using the point-plotting method:

$$3x - 2y = 6.$$

Examples:

DEFINITION

A linear function is a function of the form

$$f(x) = mx + b$$

where m and b are real numbers. The graph of a linear function is called a line.

1. Graph each linear function.

a)
$$f(x) = -6x - 2$$

b)
$$f(x) = \frac{4}{3}x - 4$$

Mini-Lecture 2.4

Linear Functions and Models

2. Find the zero of
$$H(x) = -\frac{3}{2}x + 6$$
.

3. Use the set of data points below.

x	1	4	3	6
У	18	8	10	2

a) Draw a scatter diagram of the data.

12	5	22	12	85	г.	12	15	2	53	15
63			•		ŀ	•		۰.		
13	53	87	13		Ŀ	12	35	8		10
					÷			۰.		
e		2	•2		Ŀ	12	\mathcal{X}	2		2
-		1			-		1	1		
0	\mathbf{x}	8	•2		Ŀ	12		2		2
•	3	÷.			F			۰.		2
63	3	3	•3	14	ŀ	63	14	8		14
13		32	12	1	ŀ	12	35	3.5		1
6					L	•				

b) Select two points from the scatter diagram and find the equation of line containing the two points selected.

- c) Graph the line found in part b) on the scatter diagram.
- 4. **Perimeter of a Rectangle** In a given rectangle, the length is 3 ft less than twice the width. If *x* represents the width of the rectangle, the perimeter can be calculated by the function: P(x) = 2x + 2(2x 3).
 - a) What is the implied domain of the function?
 - b) What are the dependent and independent variables?

Mini-Lecture 2.4

Linear Functions and Models

c) What is the perimeter of a rectangle whose width is 12 ft?

d) What is the width of a rectangle whose perimeter is 84 ft?