Mini-Lecture 1.8

Linear Inequalities in Two Variables

Learning Objectives:

- 1. Determine whether an ordered pair is a solution to a linear inequality.
- 2. Graph linear inequalities.
- 3. Solve problems involving linear inequalities.

Preparing for Linear Inequalities in Two Variables:

- i) Determine whether x = 2 satisfies the inequality: $-4x + 3 \le -3$.
- ii) Solve the inequality: $4x + 1 \ge 8x 3$.

iii) Graph the linear equation: -10x + 2y = -5.

Examples:

- 1. Determine whether the given points are solutions to the linear inequality: 5x 2y < -3.
 - a) (-2, 3)
- b) (1, 4)
- c) (-2, -4)

Steps for Graphing a Linear Inequality in Two Variables

- **Step 1:** Replace the inequality symbol with an equal sign and graph the resulting equation. If the inequality is strict (< or >), use dashes to graph the line; if the inequality is nonstrict (\le or \ge) use a solid line. The graph separates the xy-plane into two half-planes.
- **Step 2:** Select a test point *P* that is not on the line (that is, select a test point in one of the half-planes).
 - (a) If the coordinates of *P* satisfy the inequality, then shade the half-plane containing *P*.
 - **(b)** If the coordinates of *P* do not satisfy the inequality, then shade the half-plane that does not contain *P*.
- 2. Graph each linear inequality.
 - a) y < -2x 3

b) $3x + 4y \le 12$

c) $4x - y \ge -4$

d)
$$-5x + 3y > 15$$

e) $x \ge -2$

f) y < 3

