Mini-Lecture 1.7

Parallel and Perpendicular Lines

Learning Objectives:

- 1. Define parallel lines.
- 2. Find equations of parallel lines.
- 3. Define perpendicular lines.
- 4. Find equations of perpendicular lines.

Preparing for Parallel and Perpendicular Lines:

i) Determine the reciprocal of $-\frac{1}{5}$.

ii) Identify the slope of the line whose equation is 4x - 3y = 1.

$$4x - 3y = 1.$$

$$-3y = -4x + 1$$

$$y = 4x - 3$$

$$y = 4x - 3$$

$$y = 4x - 3$$

DEFINITION

Two nonvertical lines are **parallel** if and only if their slopes are equal and they have different *y*-intercepts. Vertical lines are parallel if they have different *x*-intercepts.

DEFINITION

Two nonvertical lines are **perpendicular** if and only if the product of their slopes is -1. Alternatively, two nonvertical lines are perpendicular if their slopes are negative reciprocals of each other. Any vertical line is perpendicular to any horizontal line.

Examples:

1. Determine whether the two lines are parallel, perpendicular, or neither.

a)
$$L_1$$
: $2x + 3y = 9$

Neither
$$m = -\frac{2}{3}$$
 $3y = -2x+9$
 $y = -\frac{2}{3}x+3$

b)
$$L_1$$
: $y = -\frac{7}{2}x + 3$

$$M = -\frac{7}{2}$$

$$L_2$$
: $6x = 9y + 4$

$$L_2$$
: $4x - 14y = -5$

$$\frac{-14y = -4x - 5}{-14} \quad m = \frac{2}{7}$$

$$y = \frac{2}{7}x + \frac{5}{14}$$

c)
$$L_1: \frac{8}{3}x - 6y = 0$$
 $(-\frac{1}{6})$ $L_2: 4x - 9y = 2$ $-9y = -4x + 7$ $(-\frac{1}{6})^{-6}y = -\frac{8}{3}x$ $(-\frac{1}{6})^{-6}y = -\frac{1}{3}x$ $(-\frac{1}{6})^{-6}y = -\frac{1}{3}x$

2:
$$4x - 9y = 2$$

 $-9y = -4x + 2$
 $y = 4x - 3$ $M = 4$

d) L_1 : contains (-2, 3) and (4, -9) L_2 : contains (-3, -6) and (1, -4)

$$M = \frac{-9-3}{4-(-2)} = \frac{-12}{6} = -2$$

$$M = -\frac{4 - (-6)}{1 - (-3)} = \frac{2}{4} = \frac{1}{2}$$

- 2. Find the equation of the line with the given properties. Express the answer in slope-intercept form.
 - a) Parallel to y = -3x 2 through the point (5, -1). M = -3

$$y - (-1) = -3(x-5)$$

$$y + 1 = -3x + 15$$

$$y = -3x + 14$$

b) Parallel to 12x + 10y = 5 through the point (-15, 0). $M = -\frac{6}{5}$

$$loy = -12x + 5$$

 $y = -12x + 5$
 $10x + 5$
 $y = -6x + 1$
 $y = -6x + 1$

$$Y-0 = \frac{1}{5}(x-(-15))$$

 $Y = -\frac{1}{5}(x-(-15))$

c) Perpendicular to $y = -\frac{4}{5}x - 3$ through the point (10, 2). $M = \frac{5}{4}$

$$y-2 = \frac{5}{4}(x-10)$$

$$y-2 = \frac{5}{4}x - \frac{25}{2} + 2$$

$$Y = \frac{5}{4}x - \frac{21}{2}$$

d) Perpendicular to 7x - 2y = 6 through the point (0, -3). $\mathcal{M} = -\frac{2}{7}$

$$-2y = -7x + 6$$

 $y = \frac{7}{2}x - 3$

$$y-(-3)=\frac{-2}{7}(x-0)$$

$$y+3=-\frac{2}{7}x$$

$$y=-\frac{2}{7}x-3$$