Mini-Lecture 1.7

Parallel and Perpendicular Lines

Learning Objectives:

- 1. Define parallel lines.
- 2. Find equations of parallel lines.
- 3. Define perpendicular lines.
- 4. Find equations of perpendicular lines.

Preparing for Parallel and Perpendicular Lines:

- *i*) Determine the reciprocal of $-\frac{1}{5}$.
- *ii*) Identify the slope of the line whose equation is 4x 3y = 1.

DEFINITION

Two nonvertical lines are **parallel** if and only if their slopes are equal and they have different *y*-intercepts. Vertical lines are parallel if they have different *x*-intercepts.

DEFINITION

Two nonvertical lines are **perpendicular** if and only if the product of their slopes is -1. Alternatively, two nonvertical lines are perpendicular if their slopes are negative reciprocals of each other. Any vertical line is perpendicular to any horizontal line.

Examples:

1. Determine whether the two lines are parallel, perpendicular, or neither. a) L_1 : 2x + 3y = 9 L_2 : 6x = 9y + 4

b)
$$L_1: y = -\frac{7}{2}x + 3$$
 $L_2: 4x - 14y = -5$

c)
$$L_1: \frac{8}{3}x - 6y = 0$$
 $L_2: 4x - 9y = 2$

d) L_1 : contains (-2, 3) and (4, -9) L_2 : contains (-3, -6) and (1, -4)

2. Find the equation of the line with the given properties. Express the answer in slope-intercept form.

a) Parallel to y = -3x - 2 through the point (5, -1).

b) Parallel to 12x + 10y = 5 through the point (-15, 0).

c) Perpendicular to $y = -\frac{4}{5}x - 3$ through the point (10, 2).

d) Perpendicular to 7x - 2y = 6 through the point (0, -3).