Mini-Lecture 1.6

Linear Equations in Two Variables

Learning Objectives:

1. Graph linear equations using point plotting.
2. Graph linear equations using intercepts.
3. Graph vertical and horizontal lines.
4. Find the slope of a line given two points.
5. Interpret slope as an average rate of change.
6. Graph a line given a point and its slope.
7. Use the point-slope form of a line.
8. Identify the slope and y-intercept of a line from its equation.
9. Find the equation of a line given two points.

Preparing for Linear Equations in Two Variables:

i) Solve for $y: 4 x+2 y=-12$.

$$
-4 x \quad-4 x
$$

$$
\frac{2 y}{2}=\frac{-4 x}{2} \frac{-12}{2}
$$

Examples:

$$
y=-2 x-6
$$

DEFINITION

A linear equation in two variables is an equation of the form

$$
A x+B y=C
$$

where A, B, and C are real numbers. A and B cannot both be 0 .

1. Graph by plotting points: $x-y=4$

Mini-Lecture 1.6

Linear Equations in Two Variables

Procedure for Finding Intercepts

- To find the x-intercept(s), if any, of the graph of an equation, let $y=0$ in the equation and solve for x.
- To find the y-intercept(s), if any, of the graph of an equation, let $x=0$ in the equation and solve for y.

2. Graph by finding the intercepts: $5 x+3 y=-15$

x-int

$y=0$
$5 x+3(0)=15$
$5 x+3(0)=15$
$5 x=-15$ $5 x=-15$
$x=-3$ $(-3,0)$
3. Graph: $x=-2$

$m=\frac{1-0}{-2--2}=\frac{1}{0}$ undefined

DEFINITION

Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ be two distinct points. If $x_{1} \neq x_{2}$, the slope \boldsymbol{m} of the nonvertical line L containing P and Q is defined by the formula

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad x_{1} \neq x_{2}
$$

If $x_{1}=x_{2}$, then L is a vertical line and the slope m of L is undefined (since this results in division by 0).
4. Draw the graph of a line that contains the point $(-2,-3)$ and has slope $\frac{4}{3}$ rise run

Mini-Lecture 1.6
Linear Equations in Two Variables

POINT-SLOPE FORM OF AN EQUATION OF A LINE
An equation of a nonvertical line with slope m that contains the point $\left(x_{1}, y_{1}\right)$ is

$$
y-y_{1}=\stackrel{\text { Slope }}{\downarrow}=m\left(x-x_{1}\right)
$$

Given Point

SLOPE-INTERCEPT FORM OF AN EQUATION OF A LINE
An equation of a line L with slope m and y-intercept b is

$$
y=f(x)=m x+b
$$

5. Find the equation of the line with the given slope and containing the given point. Express
your answer in slope-intercept form.
a) $m=\frac{-8}{l} ;(0,2)$

$$
\begin{aligned}
y-2 & =-8(x-0) \\
y-2 & =-8 x \\
y & =-8 x+2
\end{aligned}
$$

b) $m=-\frac{5}{3} ;(6,1)$

$$
\begin{aligned}
& y-1=-\frac{5}{3}(x-6) \\
& y-1=-\frac{5}{3} x+10 \\
& y=-\frac{5}{3} x+11
\end{aligned}
$$

6. Find the equation of the line containing the points $(2,-2)$ and $(-2,6)$. Express your answer in slope-intercept form.

$$
m=\frac{6-(-2)}{-2-2}=\frac{8}{-4}=-2
$$

$$
\begin{aligned}
& y-6=-2(x-(-2)) \\
& y-6=-2 x-4 \\
& y=-2 x+2
\end{aligned}
$$

7. Find the slope and y-intercept of: $3 x+2 y-12=0$.

$$
\frac{2 y}{2}=\frac{-3 x}{2}+\frac{12}{2}
$$

$$
m=-\frac{3}{2}
$$

M-10

$$
y=-\frac{3}{2} x+6
$$

$b=6$

Mini-Lecture 1.6

Linear Equations in Two Variables

SUMMARY: Equations of Lines

Form of Line	Formula	Comments
Horizontal Line	$y=b$	Graph is a horizontal line (slope is 0) with y-intercept b.
Vertical Line	$x=a$	Graph is a vertical line (undefined slope) with x-intercept a.
Point-slope	$y-y_{1}=m\left(x-x_{1}\right)$	Useful for finding the equation of a line given a point and a slope or two points.
Slope-intercept	$y=f(x)=m x+b$	This is the form of a line expressed in function notation. Useful for quickly determining the slope and y-intercept of the line.
Standard	$A x+B y=C$	Straight forward to find the x - and y-intercepts.

