Mini-Lecture 1.3

Using Formulas to Solve Problems

Learning Objectives:

- 1. Solve for a variable in a formula.
- 2. Use formulas to solve problems.

Preparing for Formulas:

Given the decimal 0.985, approximate by

i) Truncating to two decimal places

ii) Rounding to one decimal place

Examples:

1. Solve the formula for the indicated variable.

a)
$$V = \frac{1}{3}Bh$$
 for h
B B B $A = P + Prt$ for t
 $A - P = Prt$
 $B = Bh$
 $CP - A = \frac{2}{2}h(B + b)$ for B
 $CP - A = \frac{2}{2}h(B + b)$ for B
 $CP - A = \frac{2}{2}h(B + b)$ for B
 $CP - A = \frac{2}{2}h(B + b)$ for B
 $CP - A = \frac{2}{2}h(B + b)$ for B
 $CP - A = \frac{2}{2}h(B + b)$ for B
 $CP - A = \frac{2}{2}h(B + b)$ for B
 $CP - A = \frac{2}{2}h(B + b)$ for B
 $CP - A = \frac{2}{2}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h(B + b)$ for B
 $CP - A = \frac{2}{3}h($

2. **Cylinders** The surface area, A, of a right circular cylinder is given by the formula $A = 2\pi rh + 2\pi r^2$ where r is the radius of the base and h is the height of the cylinder. $A = 2\pi rh + 2\pi r^2$

a) Solve the formula for h. $-2\pi r^2$ $-2\pi r^2$

$$\left(h = \frac{A - 2\pi r^2}{2\pi r} \right) \leftarrow \frac{A - 2\pi r^2}{2\pi r} = \frac{2\pi rh}{2\pi r}$$

b) Determine the height of a cylinder whose radius measures $\frac{3}{2}$ inches and whose surface area is 30 in². Round your answer to the nearest tenth of an inch.

 $h \approx \frac{30 - 2(3.14)(\frac{3}{2})^2}{2(3.14)(\frac{3}{2})} = \frac{15.87}{9.42} = 1.7 \text{ in}$

3. **Angles of a Triangle** The sum of the measures of the interior angles of a triangle is 180°. The measure of the first angle is 15° less than the second. The measure of the third angle is 45° more than half of the second. Find the measure of each interior angle of the triangle.

x=2mangle ±x+45 = 3rd 2nd angle is 60° [st angle is 45° 3rd angle is 75° $x + x - 15 + \frac{1}{2}x + 45 = 180$ $2x + 30 + \frac{1}{2}x = 180$ $2x + \frac{1}{2}x = 150^{-2}$ 4x + x = 300 x = 60